Σάββατο 6 Μαΐου 2017

Η κινητική ενέργεια ενός τροχού.

Ο άξονας ενός τροχού ακτίνας R και μάζας m έχει στερεωθεί στο άκρο Ο μιας ομογενούς ράβδου ΑΟ, η οποία μπορεί να στρέφεται χωρίς τριβές, γύρω από οριζόντιο άξονα που περνά από το άκρο της Α. Η ράβδος έχει μήκος l=4R και μάζα Μ και ισορροπεί οριζόντια, κρεμασμένη στο άκρο νήματος, το άλλο άκρο του οποίου έχει δεθεί στο ταβάνι. Σε μια στιγμή κόβουμε το νήμα και η ράβδος (παρασύροντας και τον τροχό…) αρχίζει να περιστρέφεται και μετά από λίγο γίνεται κατακόρυφη. Στη θέση αυτή η ράβδος έχει γωνιακή ταχύτητα ω.
i)  Αν ο τροχός είναι «καρφωμένος» στο άκρο Ο, χωρίς δυνατότητα να περιστραφεί γύρω από τον άξονά του, τότε φτάνοντας στην κατακόρυφο έχει κινητική ενέργεια:
α) Κ= ½ mR2ω2,   β) Κ=8∙mR2ω2,  γ) άλλη τιμή.
ii) Αν ο τροχός είναι ελεύθερος να περιστραφεί γύρω από άξονα που περνά από το Ο ενώ αρχικά δεν στρέφεται, τότε μόλις φτάσει στην κατακόρυφο έχει κινητική ενέργεια:
α) Κ= ½ mR2ω2,   β) Κ=8∙mR2ω2,  γ) άλλη τιμή.
iii) Αν ο τροχός στην οριζόντια θέση στρέφεται με κινητική ενέργεια Κο, τότε φτάνοντας στην κατακόρυφο θέση έχει κινητική ενέργεια:
α) Κ=Κο,  β) Κ=Κο+ 8 mR2ω2,   γ) άλλη τιμή.
Δίνεται ότι η μάζα του τροχού είναι ομοιόμορφα κατανεμημένη στην περιφέρειά του.
Απάντηση:
 ή

Πέμπτη 4 Μαΐου 2017

Αντί για υλικό σημείο μια ράβδος

Μια ομογενής δοκός μάζας m και μήκους l μπορεί να στρέφεται χωρίς τριβές γύρω από οριζόντιο άξονα που περνά από το άκρο της Ο.
Α) Στο άλλο άκρο της Α προσδένεται ένα σώμα Σ της ίδιας μάζας m, το οποίο θεωρείται υλικό σημείο. Το στερεό s1 που δημιουργείται φέρεται σε θέση, που η δοκός είναι οριζόντια.
Β) Στο άκρο της Α προσδένεται μια ράβδος μάζας m και μήκους l1, κάθετα στη δοκό ΟΑ, όπως στο 2ο σχήμα, δημιουργώντας το στερεό s2. Συγκρατείται και αυτό σε θέση με οριζόντια τη δοκό ΟΑ.
Τα δυο στερεά αφήνονται να κινηθούν.
i) Μεγαλύτερη (μέγιστη) κινητική ενέργεια θα αποκτήσει:
  α) το στερεό s1.
  β) το στερεό s2.
 γ) Θα αποκτήσουν ίσες κινητικές ενέργειες.
ii) Μεγαλύτερη (μέγιστη) γωνιακή ταχύτητα θα αποκτήσει:
  α) το στερεό s1.
  β) το στερεό s2.
 γ) Θα αποκτήσουν ίσες  γωνιακές ταχύτητες.
Να δικαιολογήσετε τις απαντήσεις σας.

Δευτέρα 1 Μαΐου 2017

Πώς εφαρμόζουμε την ΑΔΣ;

Η ομογενής ράβδος ΚΑ του σχήματος μπορεί να στρέφεται γύρω από οριζόντιο άξονα που περνά από το άκρο της Κ, έχει μήκος l, μάζα m και ηρεμεί σε κατακόρυφη θέση. Μια μικρή σφαίρα (υλικό σημείο) της ίδιας μάζας m είναι δεμένη στο άκρο νήματος μήκους 2l το άλλο άκρο του οποίου έχει δεθεί στο σημείο Ο, το οποίο βρίσκεται στην ίδια κατακόρυφο με το Κ και σε ύψος h=l πάνω από αυτό. Εκτρέπουμε τη σφαίρα ώστε το νήμα να γίνει οριζόντιο και την αφήνουμε να κινηθεί. Μετά από λίγο η σφαίρα συγκρούεται στο άκρο Α της ράβδου, έχοντας αποκτήσει οριζόντια ταχύτητα υ, ενώ μετά την κρούση η ράβδος αποκτά γωνιακή ταχύτητα ω.
Θέλοντας να μελετήσουμε την κρούση αυτή, εφαρμόζουμε την αρχή διατήρησης της στροφορμής για το σύστημα των δύο σωμάτων. Τρεις μαθητές έγραψαν τις παρακάτω εξισώσεις:
α) Ο Αντώνης: mυ∙2l=mυ1∙2l+Ιρ,cm∙ω+mυcm∙ 3l/2
β) Ο Βασίλης:  mυ∙l=mυ1∙l + Ιρ,Κ∙ω
γ) Ο Γιάννης: mυ∙ ½ l= mυ1∙ ½ l+ Ιρ,cm∙ω
i)  Ως προς ποιο σημείο (ή άξονα) ο κάθε μαθητής εφάρμοσε την ΑΔΣ;
ii) Ποια ή ποιες από τις παραπάνω εξισώσεις είναι σωστές;
ή

Κυριακή 30 Απριλίου 2017

Προς τα πού θα στραφεί;

Μια λεπτή ομογενής ράβδος ΑΒ μάζας 2m μπορεί να στρέφεται γύρω από σταθερό οριζόντιο άξονα που περνά από το σημείο της Ρ, όπου (ΑΡ)= ¼ (ΑΒ), ενώ στα  δυο άκρα της κρέμονται μέσω νημάτων δύο σώματα. Το Σ1 μάζας m και το Σ2 μάζας 4m. Το σύστημα συγκρατείται ώστε η ράβδος να είναι οριζόντια. Σε μια στιγμή αφήνουμε ελεύθερο το σύστημα να κινηθεί.
Η ράβδος θα:
i) περιστραφεί δεξιόστροφα
ii) περιστραφεί αριστερόστροφα
iii) ισορροπήσει.

Πόση είναι η ισχύς της αντλίας; Ένα δεύτερο θέμα.

Η αντλία του σχήματος ανεβάζει νερό, μέσω σωλήνα διατομής Α με σταθερή παροχή Π.


Πόση είναι η ισχύς της;


Σάββατο 29 Απριλίου 2017

Κάποια στιγμή το παιχνίδι τελειώνει… Γ.

Μια μικρή σφαίρα Σ μάζας m1=0,5kg ηρεμεί στο άκρο κατακόρυφου νήματος, μήκους l=0,9m, το άλλο άκρο του οποίου έχει προσδεθεί σε σταθερό σημείο Ο. Μετακινούμε τη σφαίρα φέρνοντάς την στη θέση Α όπου το νήμα είναι οριζόντιο (αλλά και τεντωμένο) και την αφήνουμε να κινηθεί. Μετά από λίγο το νήμα σχηματίζει γωνία θ=30° με την οριζόντια διεύθυνση, για πρώτη φορά, θέση Β.
i) Να υπολογίστε την τάση του νήματος στη θέση Β, καθώς και τον ρυθμό μεταβολής της γωνιακής ταχύτητας της σφαίρας.
ii) Να βρεθεί η στροφορμή της σφαίρας, καθώς και ο αντίστοιχος ρυθμός μεταβολής της, ως προς το σημείο Ο.
Τη στιγμή που η σφαίρα Σ φτάνει στη θέση Β, το νήμα συναντά ένα καρφί, στο σημείο Κ, όπου (ΟΚ)=x, πάνω στο οποίο το νήμα εκτρέπεται, με αποτέλεσμα μετά από λίγο η σφαίρα να φτάνει στη θέση Γ,  έχοντας οριζόντια ταχύτητα υ1. Στη θέση αυτή η σφαίρα Σ συγκρούεται κεντρικά και ελαστικά με δεύτερη σφαίρα μάζας m2=1,5kg η οποία κινείται αντίθετα με ταχύτητα μέτρου υ2=1m/s. Αμέσως μετά την κρούση, η δεύτερη σφαίρα αποκτά ταχύτητα υ2΄=1,5m/s με  φορά προς τα δεξιά.
iii) Να υπολογίσετε την ταχύτητα της σφαίρας Σ ελάχιστα πριν και ελάχιστα μετά την κρούση.
iv) Να υπολογιστεί η απόσταση (ΟΚ)=x, στην οποία βρίσκεται το καρφί που εκτρέπει το νήμα.
Δίνεται g=10m/s2, ημθ= ½ και συνθ =√3/2.
 ή

Πέμπτη 27 Απριλίου 2017

3ωρο Διαγώνισμα στη Φυσική Γ΄Λυκείου (εφ' όλης της ύλης)

Α1) Σώμα μάζας που κάνει Α.Α.Τ., συγκρούεται στη θέση ισορροπίας του ,κεντρικά και πλαστικά, με άλλο σώμα μάζας  ,που κάνει κι αυτό  Α.Α.Τ στην ίδια διεύθυνση, με την ίδια θέση ισορροπίας και την ίδια περίοδο. Για να ακινητοποιηθεί το συσσωμάτωμα αμέσως μετά την κρούση πρέπει να ισχύει για τα πλάτη Α1 και Α2......

Τα θέματα:
Οι απαντήσεις:    

Μια ταλάντωση και μια διπλή τροχαλία


Μια διπλή τροχαλία, αποτελείται από δύο ομόκεντρους ομογενείς δίσκους με ακτίνες r=0,1m και R=0,2m και  μπορεί να στρέφεται γύρω από τον σταθερό οριζόντιο άξονά της. Στην μεγάλη τροχαλία έχουμε τυλίξει ένα αβαρές και μη εκτατό νήμα, στο άκρο του οποίου μέσω ενός ιδανικού ελατηρίου σταθεράς k=100Ν/m κρέμεται ένα σώμα Σ μάζας m=4kg. Γύρω από την μικρή τροχαλία, έχει τυλιχθεί ένα δεύτερο αβαρές και μη ελαστικό νήμα, το άλλο άκρο του οποίου δένεται σε σταθερό σημείο ενός τοίχου, ώστε το νήμα να είναι οριζόντιο, όπως στο σχήμα, με αποτέλεσμα το σύστημα να ισορροπεί.
i) Να υπολογίσετε την τάση του οριζόντιου νήματος
Εκτρέπουμε το σώμα Σ κατακόρυφα προς τα κάτω κατά y1 και για t=0, το αφήνουμε να κινηθεί.
ii) Τι τιμές μπορεί να πάρει η αρχική εκτροπή y1, ώστε στη συνέχεια να μην μηδενιστεί η τάση του οριζόντιου νήματος.
iii) Αν y1=0,2m, να αποδείξετε ότι το Σ θα εκτελέσει ΑΑΤ και στη συνέχεια να βρείτε πώς μεταβάλλεται η τάση του οριζόντιου νήματος, σε συνάρτηση με το χρόνο, κάνοντας και τη γραφική της παράσταση.
iv) Κάποια στιγμή t1 κόβουμε το οριζόντιο νήμα. Να βρείτε το ρυθμό μεταβολής της στροφορμής ως προς τον άξονα περιστροφής της τροχαλίας,  του συστήματος τροχαλία-σώμα Σ σε συνάρτηση με το χρόνο, κάνοντας και τη γραφική της παράσταση, για t>t1.
v) Αν t1=14π/15 s, ποιος ο ρυθμός μεταβολής της στροφορμής της τροχαλίας ως προς τον άξονα περιστροφής της, αμέσως μόλις κόψουμε το νήμα;
Δίνεται g=10m/s2.

Τρίτη 25 Απριλίου 2017

221. ΘΕΜΑ Β Στερεό



Β1.  
 Το σχήμα  δείχνει ένα δακτύλιο που έχει ακτίνα R=0,5m και μάζα m. Στο εσωτερικό του δακτυλίου είναι κολλημένη μια σημειακή μάζα m.  Τη στιγμή μηδέν, που τα δύο σώματα είναι ακίνητα όπως φαίνεται στο σχήμα, δίνεται στο δακτύλιο μια αρχική ταχύτητα υ0 και αυτός κυλίεται χωρίς να παρατηρείται κάποια ολίσθηση γύρω από σταθερό οριζόντιο άξονα, κάθετο στο επίπεδο του δακτυλίου που διέρχεται από το σημείο Κ. Η ελάχιστη αρχική οριζόντια ταχύτητα υ0 για την οποία ο δακτύλιος θα κάνει πλήρη περιστροφή είναι:




Δευτέρα 24 Απριλίου 2017

Δυνάμεις από και προς… σε κύλινδρο που ισορροπεί

Ένας κύλινδρος Α βάρους w ισορροπεί βυθισμένος σε υγρό, όπως στο διπλανό σχήμα (θέση (1)), όπου το μισό ύψος του είναι έξω από το υγρό. Προκειμένου να τον βυθίσουμε πλήρως, τοποθετούμε πάνω του έναν δεύτερο κύλινδρο Β. Το πείραμα προφανώς πραγματοποιείται εντός της ατμόσφαιρας (δεν θα μπορούσε άλλωστε να συμβεί και διαφορετικά…)
i) Η δύναμη που ασκεί ο κύλινδρος Α στο υγρό στη θέση (1) είναι:
α) μικρότερη του βάρους w,
β) ίση με το βάρος,
γ) μεγαλύτερη από το βάρος του κυλίνδρου.
ii) Στη θέση (2) το υγρό ασκεί στον κύλινδρο Α δύναμη μέτρου:
α) F1=w,  β) F1=2w,  γ) F1>2w
ή

Τετάρτη 19 Απριλίου 2017

Μια κρούση ράβδου με υλικό σημείο

Ένα υλικό σημείο Σ μάζας m είναι δεμένο στο άκρο νήματος μήκους ℓ, το άλλο άκρο του οποίου είναι δεμένο σε σταθερό οριζόντιο άξονα Ο. Γύρω από τον ίδιο άξονα μπορεί να στρέφεται χωρίς τριβές και μια ομογενής λεπτή ράβδος (ΟΑ) της ίδιας μάζας και μήκους επίσης ℓ. Αφήνουμε ταυτόχρονα τα δυο σώματα να κινηθούν σε κατακόρυφο επίπεδο, από την οριζόντια θέση, όπως στο σχήμα.

i) Το σώμα Σ θα συγκρουστεί με το άκρο Α της ράβδου:
  α) στην κατακόρυφη θέση (1),   β) δεξιά της θέσης (1),   γ) αριστερά της θέσης (1)
ii) Ελάχιστα πριν την κρούση μεγαλύτερη κινητική ενέργεια έχει:
α) Το σώμα Σ, β) η ράβδος (ΟΑ), γ) έχουν ίσες κινητικές ενέργειες.
iii) Ελάχιστα πριν την κρούση μεγαλύτερη κατά μέτρο ταχύτητα έχει:
α) Το σώμα Σ,  β) το άκρο Α της ράβδου, γ) Έχουν ταχύτητες ίσου μέτρου.
iv) Αν ακολουθήσει πλαστική κρούση και το σώμα Σ κολλήσει στη ράβδο, τότε αμέσως μετά το στερεό που προκύπτει, θα περιστραφεί με την φορά των δεικτών του ρολογιού ή αντίθετα;
Δίνεται η ροπή αδράνειας της ράβδου ως προς το άκρο της Ο: Ι= 1/3 mℓ2.
ή