Παρασκευή, 22 Μαρτίου 2019

Άλλο κέντρο δίσκου, άλλο cm.

Ένα λεπτός ομογενής δίσκος, κέντρου Ο, ακτίνας R=1m και μάζας Μ=8kg, ηρεμεί σε οριζόντιο επίπεδο, ενώ στην περιφέρειά του, στο άκρο μιας κατακόρυφης ακτίνας ΟΑ, έχει προσκολληθεί ένα σώμα Σ μάζας Μ, το οποίο θεωρούμε υλικό σημείο αμελητέων διαστάσεων. Έτσι έχουμε κατασκευάσει ένα στερεό s. Κάποια στιγμή, ασκούμε στο σώμα Σ μια οριζόντια δύναμη F μέτρου F=11Ν, όπως στο σχήμα, οπότε το στερεό μας, αρχίζει να κυλίεται. Για τη στιγμή αμέσως μόλις αρχίσει η κίνηση να βρεθούν:
i)   Η γωνιακή επιτάχυνση του στερεού.
ii)  Η επιτάχυνση του κέντρου μάζας Κ του στερεού s.
iii) Η τριβή που ασκείται στο δίσκο
iv) Η επιτάχυνση του κέντρου Ο του δίσκου.
iv) Η οριζόντια συνιστώσα της δύναμης που ασκείται στο σώμα Σ από το δίσκο.
Δίνεται ότι το cm του στερεού είναι ένα σημείο Κ, στο μέσον της ακτίνας ΟΑ, ενώ η ροπή αδράνειας του δίσκου ως προς κάθετο άξονα ο οποίος περνά από το κέντρο του Ο, δίνεται από τη σχέση Ιο= ½ ΜR2.
ή

Πέμπτη, 21 Μαρτίου 2019

Ένας κύλινδρος σε κεκλιμένο επίπεδο


Ο αρχικά ακίνητος ομογενής κύλινδρος μάζας m=1Kg, ακτίνας R=0,1m, φέρει λεπτή εγκοπή βάθους r=R/2, στην οποία είναι τυλιγμένο πολλές φορές νήμα αμελητέου πάχους. Για τη γωνία κλίσης ισχύει ημθ=0,6 και συνθ=0,8. Κάποια στιγμή ο κύλινδρος αφήνεται ελεύθερος.
i) Η ελάχιστη τιμή του συντελεστή οριακής τριβής μεταξύ του κυλίνδρου και του πλάγιου επιπέδου, ώστε ο κύλινδρος να ισορροπεί είναι:
α) μs,min=1/8                       β) μs,min=1/2                                 γ) μs,min=1/4
ii) Αν μ<μs,min  αποδείξτε το σχοινί θα παραμείνει τεντωμένο.
iii)  Για τα μέτρα της μεταφορικής επιτάχυνσης....

Συνέχεια

Τετάρτη, 20 Μαρτίου 2019

Μια ράβδος σε λείο επίπεδο

Σε λείο οριζόντιο επίπεδο, ηρεμεί μια λεπτή ομογενής ράβδος μάζας Μ=3kg και μήκους ℓ=4m. Σε μια στιγμή t0=0 ασκείται στο σημείο Α της ράβδου, το οποίο απέχει 0,5m από το άκρο της, μια σταθερή οριζόντια δύναμη F, μέτρου F=3Ν, με διεύθυνση κάθετη στη ράβδο. Τη χρονική στιγμή t1=√3s η ράβδος έχει περιστραφεί κατά 90° και βρίσκεται στη θέση δεξιά στο  διπλανό σχήμα.
i)  Να υπολογιστεί η αρχική επιτάχυνση του σημείου Α, εφαρμογής της δύναμης F.
ii)  Να βρεθεί η ταχύτητα του μέσου Κ της ράβδου τη στιγμή t1.
iii) Πόσο είναι το έργο της δύναμης F  από 0-t1 και με ποιο ρυθμό προσφέρει ενέργεια στη ράβδο τη στιγμή t1;
iv) Να υπολογιστεί η επιτάχυνση του σημείου Α τη στιγμή t1.
Δίνεται η ροπή αδράνειας της ράβδου, ως προς κάθετο άξονα ο οποίος περνά από το μέσον της, Ι=Μℓ2/12.

ή

Τρίτη, 19 Μαρτίου 2019

Ισορροπία και επιτάχυνση στερεού


Ένας ομογενής δίσκος, κέντρου Ο, μάζας Μ=4kg και ακτίνας R=1m, μπορεί να στρέφεται χωρίς τριβές, γύρω από σταθερό οριζόντιο άξονα ο οποίος περνά από ένα σημείο Α της περιφέρειάς του. Στο σημείο Β, αντιδιαμετρικό σημείο του Α, έχει προσκολληθεί ένα σώμα Σ, μάζας m=4kg, το οποίο μπορούμε να θεωρήσουμε υλικό σημείο αμελητέων διαστάσεων, παίρνοντας ένα στερεό s. Το στερεό ισορροπεί με τη βοήθεια οριζόντιου νήματος ΓΒ, σε τέτοια θέση ώστε η διάμετρος ΑΒ να σχηματίζει με την κατακόρυφο γωνία θ με ημθ=0,55 και συνθ=0,84.
Δίνονται η ροπή αδράνειας του δίσκου ως προς κάθετο άξονα που περνά από το κέντρο του Ιcm= ½ ΜR2 και g=10m/s2.
i)  Να υπολογιστεί η τάση του νήματος.
ii) Να βρεθεί η δύναμη που ασκεί ο άξονας στον δίσκο, στο σημείο Α.
iii) Σε μια στιγμή κόβουμε το νήμα, με αποτέλεσμα το στερεό s να αρχίσει να στρέφεται γύρω από τον άξονα, διαγράφοντας κατακόρυφο επίπεδο. Για τη στιγμή t=0, αμέσως μετά το κόψιμο του νήματος να βρεθούν:
α) Η επιτάχυνση του υλικού σημείου Σ.
β) Η δύναμη που ασκεί ο άξονας στο δίσκο.
ή

Κυριακή, 17 Μαρτίου 2019

Κόβοντας έναν δίσκο στη μέση


Ένας ομογενής δίσκος, κέντρου Κ, ακτίνας R και μάζας Μ, μπορεί να περιστρέφεται χωρίς τριβές, γύρω από οριζόντιο άξονα, ο οποίος περνά από ένα σημείο Α της περιφέρειάς του, με το επίπεδό του κατακόρυφο. Φέρνουμε το δίσκο στη θέση που δείχνει το διπλανό σχήμα, όπου η ακτίνα ΚΑ είναι οριζόντια και τον αφήνουμε να περιστραφεί, με αποτέλεσμα το σημείο Β, αντιδιαμετρικό του Α, να αποκτά αρχική επιτάχυνση μέτρου α1=4g/3.
i) Η ροπή αδράνειας του δίσκου ως προς τον άξονα περιστροφής του στο Α, δίνεται από την εξίσωση:
α) Ι1= ½ ΜR2,   β) Ι1= ΜR2,   γ) Ι1= 1,5ΜR2,   δ) Ι1= 2 ΜR2.
ii) Κόβουμε το δίσκο κατά μήκος της διαμέτρου ΑΒ, κρατώντας το ένα τμήμα του, το οποίο μπορεί να στρέφεται γύρω από τον ίδιο άξονα στο Α. Φέρνουμε το ημικύκλιο στη θέση του σχήματος, όπου και πάλι η διάμετρος ΑΒ να είναι οριζόντια, οπότε ο φορέας του βάρους διέρχεται ξανά από το κέντρο Κ και το αφήνουμε να περιστραφεί. Η αρχική επιτάχυνση του σημείου Κ θα έχει μέτρο:
α) α2=g/3,   β) α2=2g/3,    γ) α2=g,   δ) α2=4g/3.
όπου g η επιτάχυνση της βαρύτητας.
Να δικαιολογήσετε τις απαντήσεις σας
ή

Παρασκευή, 15 Μαρτίου 2019

Ο ποντικός και το τυρί



Ένας ποντικός μάζας m=200gr που θεωρείται υλικό σημείο τρέχει με φορά αντίθετη προς τους δείκτες του ρολογιού, πάνω στην περιφέρεια ενός λεπτού κυκλικού. O δίσκος έχει ακτίνα R=0,5m και μπορεί να περιστρέφεται γύρω από κατακόρυφο άξονα που περνά από το κέντρο του χωρίς τριβές. Η ροπή αδράνειας του δίσκου περί τον άξονα στροφής του είναι ΙΔ=0,45kg·m2. Η επιτρόχια ταχύτητα του ποντικού, σε σχέση με ακίνητο παρατηρητή στο έδαφος, έχει μέτρο υ=1m/s, ενώ ο δίσκος περιστρέφεται αντιωρολογιακά με γωνιακή ταχύτητα μέτρου ω0=4r/s ως προς τον ακίνητο παρατηρητή.
Στην περιφέρεια του δίσκου βρίσκεται ένα πολύ μικρό κομμάτι τυριού που τη θεωρούμενη χρονική στιγμή t=0 η επίκεντρη γωνία που σχηματίζουν ο  ποντικός και το τυρί είναι θ=2π/3rad. Μόλις ο ποντικός βρει το τυρί σταματά ως προς τον δίσκο.
i) Να βρείτε ποια χρονική στιγμή ο ποντικός θα βρει το τυρί.
ii) Ποια είναι η γωνιακή ταχύτητα του περιστρεφόμενου δίσκου μετά το σταμάτημα του ποντικού;
iii) Υπολογίστε τη μεταβολή στην κινητική ενέργεια του συστήματος πριν και μετά το σταμάτημα του ποντικού.
iv) Που οφείλεται η  μεταβολή στην κινητική ενέργεια του συστήματος πριν και μετά το σταμάτημα του ποντικού;

Δίνονται
Η μάζα του τυριού είναι πολύ μικρή συγκρινόμενη με τις μάζες του ποντικού και του δίσκου και δεν λαμβάνεται υπόψη. Το μέτρο της επιτάχυνσης της βαρύτητας είναι |g|=10m/s2.

Απάντηση






Τετάρτη, 13 Μαρτίου 2019

Από την τετράγωνη πλάκα στην τριγωνική

Μια ομογενής τετράγωνη πλάκα μάζας Μ και πλευράς α, μπορεί να στρέφεται χωρίς τριβές γύρω από σταθερό οριζόντιο άξονα, ο οποίος διέρχεται από την κορυφή της Α. Συγκρατούμε την πλάκα, στη θέση που φαίνεται στο σχήμα, όπου η πλευρά της ΑΒ είναι οριζόντια, ενώ το επίπεδό είναι κατακόρυφο. Σε μια στιγμή η πλάκα αφήνεται να περιστραφεί, οπότε η κορυφή Β αποκτά αρχική επιτάχυνση μέτρου αΒ= 3g/4=7,5m/s2.

i)  Να υπολογιστούν:
α) Η αρχική επιτάχυνση του κέντρου Κ της πλάκας.
β) η ροπή αδράνειας της πλάκας ως προς τον άξονα περιστροφής της, σε συνάρτηση με τη μάζα Μ και το μήκος της πλευράς α.
ii) Να υπολογιστεί η ροπή αδράνειας της πλάκας ως προς άξονα, κάθετο στο επίπεδο της πλάκας, ο οποίος περνά από το κέντρο Κ του τετραγώνου, αν Μ=12kg και α=1m.
 iii) Κόβουμε την τετράγωνη πλάκα κατά μήκος της διαγωνίου ΒΔ, με αποτέλεσμα να πάρουμε δύο ίσα ορθογώνια και ισοσκελή τρίγωνα. Η τριγωνική πλάκα ΑΒΔ, παραμένει στη θέση της και μπορεί να περιστρέφεται γύρω από τον οριζόντιο άξονα, που περνά από την κορυφή Α. Αφήνουμε ξανά την νέα πλάκα να περιστραφεί από την θέση του σχήματος, όπου η πλευρά ΑΒ είναι οριζόντια.
α) Να υπολογιστεί η ροπή αδράνειας της τριγωνικής πλάκας, ως προς τον άξονα περιστροφής της.
β) Ποια η αρχική επιτάχυνση της κορυφής Β και του μέσου Κ της πλευράς ΒΔ.
Δίνεται g=10m/s2.
ή


Τρίτη, 12 Μαρτίου 2019

Ένας δίσκος και ένα υλικό σημείο.


Ένας ομογενής δίσκος, κέντρου Κ, μάζας Μ=1,2kg και ακτίνας R=1m, μπορεί να στρέφεται χωρίς τριβές, γύρω από σταθερό οριζόντιο άξονα ο οποίος περνά από ένα σημείο Α της περιφέρειάς του. Ο δίσκος ισορροπεί με τη βοήθεια οριζόντιου νήματος ΓΔ, το οποίο δένεται στο άκρο μιας οριζόντιας ακτίνας ΚΓ, ενώ στη θέση Β, σε κατακόρυφη απόσταση (ΑΒ)= x=R, έχει  στερεωθεί ένα μικρό σώμα Σ, το οποίο θεωρούμε αμελητέων διαστάσεων. Έτσι έχουμε δημιουργήσει ένα στερεό s.
Δίνονται για τη  γωνία θ που σχηματίζει η ακτίνα ΚΑ με την κατακόρυφο, ημθ=0,8 και συνθ=0,6, η ροπή αδράνειας του δίσκου ως προς κάθετο άξονα που περνά από το κέντρο του Ιcm= ½ ΜR2 και g=10m/s2.
i)  Να υπολογιστεί η τάση του νήματος.
ii) Σε μια στιγμή κόβουμε το νήμα, με αποτέλεσμα αμέσως μετά, το κέντρο Κ του δίσκου να αποκτήσει επιτάχυνση μέτρου 4,8m/s2. Ζητούνται:
α) Να σχεδιάστε στο σχήμα τις επιταχύνσεις των σημείων Κ και Β, μόλις κοπεί το νήμα.
β) Να προσδιοριστεί η μάζα του σώματος Σ.
iii) Να υπολογιστεί η δύναμη που ασκείται στο δίσκο από τον άξονα περιστροφής, πριν το κόψιμο του νήματος.
ή

Δευτέρα, 11 Μαρτίου 2019

Η τροχιά μιας σφαίρας



Μια σφαίρα μάζας m=2kg και ακτίνας R κυλίεται στην ταράτσα ενός κτιρίου ύψους h=20m. Στην άκρη της ταράτσας υπάρχει κατάλληλα διαμορφωμένη ράμπα με αποτέλεσμα η σφαίρα να εγκαταλείψει το κτίριο κυλιόμενη πλάγια όπως φαίνεται στο σχήμα. Τη στιγμή που εγκαταλείπει το κτίριο έχει ταχύτητα κέντρου μάζας μέτρου υ0=20m/s και γωνιακή ταχύτητα ω0 όπως φαίνεται στο διπλανό σχήμα. Η τροχιά που ακολουθεί η σφαίρα αποτυπώνεται  με την συνεχή κόκκινη γραμμή.
i) Tότε :
α. Δεν υπάρχουν τριβές μεταξύ της σφαίρας και του αέρα.
β. Υπάρχουν τριβές μεταξύ της σφαίρας και του αέρα.
γ. Δεν μπορούμε να αποφανθούμε αν εμφανίζονται τριβές μεταξύ της σφαίρας και του αέρα καθώς δεν δίνεται το ύψος Η.
ii) Στην ανώτερη θέση Α:
α. Η γωνιακή ταχύτητα της σφαίρας είναι μηδέν.
β. Η γωνιακή ταχύτητα της σφαίρας είναι διάφορη του μηδενός.
γ. Η γωνιακή ταχύτητα της σφαίρας μπορεί να είναι μηδέν.

Να επιλέξτε τις σωστές προτάσεις.                                                                           
Να αιτιολογήσετε τις επιλογές σας.                                                                           

Δίνεται η ροπή αδράνειας της σφαίρας περί άξονα που διέρχεται από το κέντρο μάζας της είναι Ιcm=0,4·m·R2 και το μέτρο της επιτάχυνσης της βαρύτητας g=10m/s2.


Κυριακή, 10 Μαρτίου 2019

Η ράβδος και το ζεύγος δυνάμεων.


Σε λείο οριζόντιο επίπεδο, ηρεμεί μια οριζόντια ομογενής ράβδος ΑΒ, μήκους ℓ=2m και μάζας 6kg, η οποία μπορεί να  στρέφεται γύρω από σταθερό κατακόρυφο άξονα z, ο οποίος περνά από το άκρο της Β. Στη ράβδο ασκείται ένα ζεύγος  δυνάμεων, όπως στο σχήμα και μια οριζόντια σταθερή δύναμη F,  μέτρου F=4Ν η οποία ασκείται κάθετα στη ράβδο στο σημείο Γ, όπου (ΒΓ)=0,5m.
i)  Να σχεδιαστεί η δύναμη F και να υπολογιστεί η ροπή του ζεύγους των δυνάμεων F1 και F2
ii)  Υποστηρίζεται η άποψη, ότι ένα στερεό στο οποίο ασκείται ένα ζεύγος δυνάμεων, δεν μπορεί να ισορροπεί με την άσκηση μιας μόνο επιπλέον δύναμης. Χρειάζεται να ασκηθεί ένα ακόμη ζεύγος δυνάμεων. Να εξετάσετε την ορθότητα ή μη της πρότασης αυτής, χρησιμοποιώντας την παραπάνω ράβδο.
iii) Να υπολογιστεί η αρχική επιτάχυνση (t=0) του άκρου Α της ράβδου, αν η δύναμη F έχει την κατεύθυνση του δεξιού σχήματος, κάθετη στη ράβδο, ενώ η ράβδος ΑΒ:
α) Μπορεί να στρέφεται γύρω από τον άξονα z, στο άκρο Β.
β) Έχει αποδεσμευτεί από τον άξονα αυτόν και είναι ελεύθερη.
Δίνεται η ροπή αδράνειας της ράβδου ως προς κάθετο άξονα ο οποίος περνά από το μέσον της Μ, Ιcm= mℓ2/12.
ή

Παρασκευή, 8 Μαρτίου 2019

Ισορροπία κυλίνδρου σε κεκλιμένο επίπεδο.

Ένας ομογενής κύλινδρος ηρεμεί σε κεκλιμένο επίπεδο κλίσεως θ, με τη βοήθεια νήματος, το οποίο έχουμε τυλίξει γύρω του, με διεύθυνση κάθετη στο επίπεδο, όπως στο πρώτο από τα διπλανά σχήματα. Δίνεται ημθ=0,4 και συνθ≈0,9.
i)  Να αποδείξτε ότι το κεκλιμένο επίπεδο δεν είναι λείο.
ii) Να υπολογιστεί ο ελάχιστος συντελεστής οριακής στατικής τριβής, μεταξύ κυλίνδρου και επιπέδου, για την παραπάνω ισορροπία.
iii) Υποστηρίζεται ως εναλλακτική ισορροπία, αυτή του δεύτερου σχήματος. Να εξετάσετε αν είναι δυνατή η ισορροπία αυτή.
ή