Πέμπτη, 23 Νοεμβρίου 2017

Δυο κύματα στο ίδιο μέσον


Κατά μήκος ενός γραμμικού ελαστικού μέσου διαδίδονται με αντίθετη φορά δυο κύματα, με αποτέλεσμα κάποια στιγμή, η μορφή μιας περιοχής του μέσου, να είναι όπως στο πάνω σχήμα.
i)  Αντλώντας πληροφορίες από το σχήμα, να απαντήσετε στις παρακάτω ερωτήσεις:
Α) Αν η περίοδος του (1) κύματος είναι Τ1=0,5s, τότε η περίοδος του (2) κύματος είναι ίση:
α) Τ2=0,3s,    β) Τ2= 1/3 s,     Τ3= 2/3 s,     δ) Τ2=0,8s.
Β) Να σχεδιάστε στο σχήμα τις ταχύτητες ταλάντωσης των σημείων Β και Γ. Ποια από τις δύο έχει μεγαλύτερο μέτρο;
Γ) Μετά από λίγο, μια στιγμή που θεωρούμε t=0, τα δυο κύματα συναντώνται στο σημείο Μ, όπως στο δεύτερο σχήμα. Το σημείο Μ αμέσως μετά:
α) Θα κινηθεί προς τα πάνω.
β) θα κινηθεί προς τα κάτω.
γ) Θα παραμείνει ακίνητο.
Να δικαιολογήσετε αναλυτικά τις απαντήσεις σας.
ii) Αν το πλάτος κάθε κύματος είναι Α=0,2m, αφού βρείτε την εξίσωση της απομάκρυνσης της ταλάντωσης του σημείου Μ, να υπολογίσετε τη χρονική στιγμή t1=2/3 s:
α) την τιμή της απομάκρυνσης του σημείου Μ.
β) την τιμή της ταχύτητας ταλάντωσης του Μ.
ή

Τετάρτη, 22 Νοεμβρίου 2017

Τρεις Θαυμάσιες λύσεις !!!


3)   Ένα σώμα μάζας 2kg εκτελεί εξαναγκασμένη ταλάντωση με την επίδραση περιοδικής εξωτερικής δύναμης F=F0ημ20πt και με πλάτος 0,2m, ενώ δέχεται δύναμη απόσβεσης της μορφής Fαπ=-2υ (S.Ι.). Σε μια στιγμή βρίσκεται σε σημείο Α στη θέση x=-0,2m.
i)  Να βρεθεί η ταχύτητά του τη στιγμή που φτάνει σε σημείο Β στη θέση xΒ=0,1m.
ii) Να υπολογιστεί η δυναμική του ενέργεια στις θέσεις Α και Β.

Διαβάστε περισσότερα…
ή

Σάββατο, 18 Νοεμβρίου 2017

Μια αρχή στα κύματα

Κατά μήκος ενός γραμμικού ελαστικού μέσου και από τα αριστερά προς τα δεξιά διαδίδεται χωρίς απώλειες ένα αρμονικό κύμα, το οποίο τη στιγμή t0=0 φτάνει σε ένα σημείο Ο, το οποίο λαμβάνουμε ως αρχή ενός προσανατολισμένου άξονα x, με την προς τα δεξιά κατεύθυνση ως θετική. Το σημείο Ο ξεκινά την ταλάντωσή του προς τα πάνω (θετική φορά του άξονα y) και εκτελεί 10 πλήρεις ταλαντώσεις σε χρονικό διάστημα 12s, διανύοντας στο μεταξύ διάστημα 8m. Το κύμα φτάνει σε ένα σημείο Β, στη θέση xΒ=x1=2,2m τη χρονική στιγμή t1=1,1s.
 i)  Να γράψετε τις εξισώσεις για την απομάκρυνση σε συνάρτηση με το χρόνο, για τις ταλαντώσεις που θα εκτελέσουν τα σημεία Ο και Β.
ii) Να βρεθεί η εξίσωση του κύματος.
iii) Να σχεδιάστε το στιγμιότυπο του κύματος τη στιγμή  t1 που το κύμα φτάνει στο σημείο Β και για την περιοχή του θετικού ημιάξονα. Ποια η απομάκρυνση του σημείου Ο την παραπάνω χρονική στιγμή;
iv) Ποια χρονική στιγμή t2 το σημείο Β, θα απέχει κατά 0,1m από τη θέση ισορροπίας του, για πρώτη φορά; Πόση είναι η επιτάχυνσή του τη στιγμή αυτή; Να σχεδιάστε την μορφή του μέσου (του θετικού ημιάξονα) την στιγμή t2 και να σημειώστε πάνω στο διάγραμμα την ταχύτητα και την επιτάχυνση  του σημείου Β.
ή

Κυριακή, 12 Νοεμβρίου 2017

Άλλη μια σύνθεση ταλαντώσεων


Ένα σώμα μάζας 0,2kg ταλαντώνεται με εξίσωση:
i)  Να αποδείξετε ότι η κίνηση του σώματος είναι αρμονική συνάρτηση του χρόνου και να υπολογίστε το πλάτος και την αρχική φάση  της απομάκρυνσης.
ii)  Τη χρονική στιγμή t1=0,25s να βρεθούν:
α) Ο ρυθμός μεταβολής της ορμής του σώματος.
β) Ο ρυθμός μεταβολής της κινητικής του ενέργειας.

ή



Τρίτη, 7 Νοεμβρίου 2017

Η ανάκλαση εγκάρσιου αρμονικού κύματος στη λυκειακή φυσική

Η ανάκλαση εγκάρσιου αρμονικού κύματος στη λυκειακή φυσική
Κάθε φορά που ένα κύμα αλλάζει μέσο διάδοσης, στο σημείο – σύνορο των δύο μέσων συμβαίνει ανάκλαση ενός τμήματος του κύματος. Οι ταχύτητες διάδοσης του κύματος στα δύο μέσα είναι διαφορετικές και εξαρτώνται από την γραμμική πυκνότητα (μ=dm/dx) των δύο μέσων, δηλαδή τη μάζα ανά μονάδα μήκους του μέσου καθόσον τα μέσα  που θα μας απασχολήσουν θεωρούνται γραμμικά
Η ανάκλαση εγκάρσιου αρμονικού κύματος στη λυκειακή φυσική

Κυριακή, 5 Νοεμβρίου 2017

Δύο σώματα ταλαντώνονται ύστερα από μια ιδιαίτερη κρούση...

Το σώμα Σ1 του διπλανού σχήματος έχει μάζα m1=1,9kg και είναι δεμένο στο ελεύθερο άκρο ενός
οριζόντιου ελατηρίου σταθεράς k=500Ν/m το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο σε τοίχο. Από την άλλη μεριά του σώματος Σ1 μέσω ιδανικού μη εκτατού σχοινιού δένουμε το σώμα Σ2 μάζας m2=3kg και το σύστημα που προκύπτει αρχικά ισορροπεί. Ο οδηγός του σχοινιού που βρίσκεται στη γωνία Α δεν εμφανίζει τριβές με αυτό. Κάποια στιγμή που θεωρούμε t=0 ένα βλήμα μάζας m=100g κινείται με ταχύτητα μέτρου υ=200m/s που σχηματίζει γωνία θ=60o με την οριζόντια διεύθυνση συγκρούεται πλαστικά με το σώμα Σ1.
Συνέχεια...

Παρασκευή, 3 Νοεμβρίου 2017

Από το στιγμιότυπο κύματος στην περιγραφή του

Στο παραπάνω σχήμα απεικονίζεται το στιγμιότυπο εγκαρσίου αρμονικού κύματος που  διαδίδεται σε μια χορδή, τη χρονική στιγμή t=29/24s . Το σημείο Ρ βρίσκεται στη θέση xP=5/12m   και την παραπάνω χρονική στιγμή βρίσκεται στη θέση ισορροπίας του.
Θεωρούμε ότι υπάρχει πηγή αρμονικού κύματος στη θέση Ο( x=0) (άκρο της χορδής) που άρχισε να ταλαντώνεται τη χρονική στιγμή t=0  με εξίσωση απομάκρυνσης
y=0,2ημωt
 και ότι είναι δυνατόν να δημιουργήσει την παραπάνω διέγερση της χορδής!!  Από τα παραπάνω δεδομένα να υπολογίσετε:
Η συνέχεια:

Τετάρτη, 1 Νοεμβρίου 2017

Η διεγείρουσα δύναμη αφαιρεί ενέργεια;


Ένα  σώμα μάζας m=0,1kg, δένεται στο άκρο ιδανικού ελατηρίου σταθεράς k=8Ν/m και με την επίδραση μιας αρμονικής εξωτερικής δύναμης, της μορφής:
Fεξ=F0∙ημ(10t+3π/4)
εκτελεί ταλάντωση με απομάκρυνση x=0,5∙ημ(10t)   (S.Ι.), ενώ δέχεται και δύναμη απόσβεσης της μορφής Fαπ=-b∙υ .
i)  Να βρεθεί το πλάτος F0 της εξωτερικής δύναμης και η σταθερά απόσβεσης b.
ii) Να υπολογιστεί η μέγιστη κινητική και η μέγιστη δυναμική ενέργεια στη διάρκεια της ταλάντωσης.
iii) Να υπολογιστούν η κινητική και η δυναμική ενέργεια τη χρονική στιγμή t1=π/30s. Ποιοι οι αντίστοιχοι ρυθμοί μεταβολής, των δύο μορφών ενέργειας τη στιγμή αυτή;
iv) Για την παραπάνω χρονική στιγμή, να βρεθεί η ισχύς της εξωτερικής δύναμης και ο ρυθμός με τον οποίο η μηχανική ενέργεια μετατρέπεται σε θερμική εξαιτίας της δύναμης απόσβεσης.
Να σχολιαστούν τα αποτελέσματα.
Δίνεται ημ(π/12) ≈ 0,26 .
ή



Δευτέρα, 30 Οκτωβρίου 2017

Ελατήριο με μάρσιππο.

Στο διπλανό σχήμα βλέπουμε δύο ελατήρια (το ένα μέσα στο άλλο), όπου το εξωτερικό έχει σταθερά k1 = 100 N/m και το εσωτερικό k2 = 400 N/m. Δένουμε (και στα δύο ελατήρια) σώμα Σ μάζας m = 1 kg σε τέτοια θέση ώστε το ελατήριο σταθεράς k1 να έχει παραμόρφωση Δℓ1 = 0,1 m και όταν αφήσουμε το σώμα Σ να ισορροπεί. Την χρονική στιγμή t0 = 0, κόβουμε την σύνδεση του ελατηρίου σταθεράς k2 με το σώμα Σ, οπότε αυτό αρχίζει να ταλαντώνεται. Την χρονική στιγμή t1 = π/15 s, ασκείται στο σώμα Σ σταθερή δύναμη F μέτρου 15 Ν και φορά προς τα κάτω. Η δράση της δύναμης F διαρκεί μέχρι τη στιγμή που το σώμα περνά για πρώτη φορά από την θέση ισορροπίας της αρχικής ταλάντωσης.
α. Να βρείτε πόσο απέχουν τα φυσικά μήκη των ελατηρίων σταθεράς k1, k2
β. Να γράψετε την εξίσωση της απομάκρυνσης του σώματος από την Θ.Ι. για το χρονικό διάστημα Δt = t1t0, θεωρώντας θετική την φορά προς τα κάτω
γ. Να υπολογίσετε την μεταβολή ενέργεια (ΔΕ = Ε3 – Ε1) της ταλάντωσης που πραγματοποιείται πριν την δράση της δύναμης F, (Ε1) και μετά την κατάργηση αυτής (Ε3).
δ. Να υπολογίσετε την ελάχιστη δύναμη που δέχεται το Σ από το ελατήριο, κατά την διάρκεια της ταλάντωσης που πραγματοποιεί μετά την κατάργηση της δύναμης F.

Σάββατο, 28 Οκτωβρίου 2017

Μια απλή αρμονική ταλάντωση και μια εξαναγκασμένη


Ένα σώμα μάζας 0,5kg είναι δεμένο στο άκρο ιδανικού ελατηρίου σταθεράς k=18Ν/m κι εκτελεί ΑΑΤ με εξίσωση απομάκρυνσης x=0,2∙ημ(ωt)  (μονάδες στο S.Ι.) σε λείο οριζόντιο επίπεδο, γύρω από τη θέση φυσικού μήκους του ελατηρίου Ο.
i) Να βρεθούν οι εξισώσεις της κινητικής, της δυναμικής και της ενέργειας ταλάντωσης σε συνάρτηση με το χρόνο και να παρασταθούν γραφικά στους ίδιους άξονες.
ii) Το ίδιο σύστημα τίθεται σε εξαναγκασμένη ταλάντωση με την επίδραση εξωτερικής περιοδικής δύναμης, ενώ ταυτόχρονα δέχεται από το περιβάλλον του και δύναμη απόσβεσης της μορφής Fαπ=-bυ. Μετά την αποκατάσταση σταθερού πλάτους ταλάντωσης,  γύρω από την ίδια θέση ισορροπίας Ο, λαμβάνοντας κάποια στιγμή ως αρχή μέτρησης του χρόνου, έχουμε την απομάκρυνση από την θέση ισορροπίας Ο, να υπακούει στην εξίσωση x=0,2∙ημ(5t)  (S.Ι.).
α) Να βρεθούν οι εξισώσεις υ=υ(t) και α=α(t) της ταχύτητας και της επιτάχυνσης του σώματος σε συνάρτηση με το χρόνο.
β) Να βρεθούν οι εξισώσεις της κινητικής και της δυναμικής ενέργειας σε συνάρτηση με το χρόνο και να παρασταθούν γραφικά στους ίδιους άξονες.
γ) Το άθροισμα Κ+U των δύο παραπάνω ενεργειών παραμένει σταθερό στη διάρκεια της ταλάντωσης; Να σχολιάστε το συμπέρασμα που καταλήγετε παράλληλα με την πρόταση ότι «στη διάρκεια της εξαναγκασμένης ταλάντωσης η ενέργεια που προσφέρεται στο σύστημα (μέσω της εξωτερικής δύναμης) αντισταθμίζει τις απώλειες (που οφείλονται στις δυνάμεις απόσβεσης) και έτσι το πλάτος της ταλάντωσης διατηρείται σταθερό».
ή