Στην πλατφόρμα ενός τραίνου που κινείται με σταθερή ταχύτητα uτ προς τα δεξιά, ηρεμεί κυλινδρικό σώμα ακτίνας r=40cm. Τη χρονική στιγμή t=0, ο κύλινδρος αρχίζει να κυλάει προς τα πίσω χωρίς να ολισθαίνει με σταθερή γωνιακή επιτάχυνση αγων., όπως φαίνεται στο παρακάτω σχήμα.
Αν ο συνολικός χρόνος κίνησης του κυλίνδρου, μέχρι να εγκαταλείψει τη πλατφόρμα, είναι t1=40s και η συνολική γωνία που διαγράφει φ=50rad, να υπολογιστούν ως προς ακίνητο παρατηρητή που βρίσκεται πάνω στο τραίνο:
α) το μήκος της πλατφόρμας του τραίνου
β) η γωνιακή επιτάχυνση και η επιτάχυνση του κέντρου μάζας του κυλίνδρου
γ) η γωνιακή ταχύτητα και η ταχύτητα του κέντρου μάζας του κυλίνδρου τη στιγμή που εγκαταλείπει τη πλατφόρμα
δ) ο αριθμός των περιστροφών του κυλίνδρου, ως τη στιγμή που εγκαταλείπει την πλατφόρμα
Aν η απόσταση που έχει διανύσει το τρένο, μέχρι να πέσει ο κύλινδρος από την πλατφόρμα, είναι x1=30m
ε) να υπολογιστεί η ταχύτητα με την οποία κινείται το τρένο
στ) να σχεδιαστούν οι γραφικές: ω=f(t), αγων.=f(t) και θ=f(t), μέχρι τι στιγμή που το κυλινδρικό σώμα εγκαταλείπει την πλατφόρμα.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.