Στο διπλανό σχήμα βλέπουμε δύο ελατήρια (το ένα μέσα στο άλλο), όπου το εξωτερικό έχει σταθερά k1 = 100 N/m και το εσωτερικό k2 = 400 N/m. Δένουμε (και στα δύο ελατήρια) σώμα Σ μάζας m = 1 kg σε τέτοια θέση ώστε το ελατήριο σταθεράς k1 να έχει παραμόρφωση Δℓ1 = 0,1 m και όταν αφήσουμε το σώμα Σ να ισορροπεί. Την χρονική στιγμή t0 = 0, κόβουμε την σύνδεση του ελατηρίου σταθεράς k2 με το σώμα Σ, οπότε αυτό αρχίζει να ταλαντώνεται. Την χρονική στιγμή t1 = π/15 s, ασκείται στο σώμα Σ σταθερή δύναμη F μέτρου 15 Ν και φορά προς τα κάτω. Η δράση της δύναμης F διαρκεί μέχρι τη στιγμή που το σώμα περνά για πρώτη φορά από την θέση ισορροπίας της αρχικής ταλάντωσης.
α. Να βρείτε πόσο απέχουν τα φυσικά μήκη των ελατηρίων σταθεράς k1, k2
β. Να γράψετε την εξίσωση της απομάκρυνσης του σώματος από την Θ.Ι. για το χρονικό διάστημα Δt = t1 – t0, θεωρώντας θετική την φορά προς τα κάτω
γ. Να υπολογίσετε την μεταβολή ενέργεια (ΔΕ = Ε3 – Ε1) της ταλάντωσης που πραγματοποιείται πριν την δράση της δύναμης F, (Ε1) και μετά την κατάργηση αυτής (Ε3).
δ. Να υπολογίσετε την ελάχιστη δύναμη που δέχεται το Σ από το ελατήριο, κατά την διάρκεια της ταλάντωσης που πραγματοποιεί μετά την κατάργηση της δύναμης F.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.