Μια ομογενής ράβδος μήκους
ℓ=1,5m και μάζας m=3kg μπορεί να στρέφεται σε κατακόρυφο επίπεδο, γύρω από
σταθερό οριζόντιο άξονα ο οποίος περνά από το άκρο της Ο. Στο άλλο άκρο της
ράβδου δένουμε ένα σώμα Σ, της ίδιας μάζας m με τη ράβδο και αμελητέων
διαστάσεων (υλικό σημείο), οπότε έτσι δημιουργούμε ένα στερεό s. Φέρνουμε το στερεό στη θέση
(1) ώστε η ράβδος να είναι οριζόντια και το αφήνουμε να κινηθεί.
i) Να υπολογίσετε τη ροπή αδράνειας του στερεού s, ως
προς τον άξονα περιστροφής του.
ii) Να βρεθεί η αρχική γωνιακή επιτάχυνση του στερεού,
καθώς και η δύναμη F που ασκείται στο σώμα Σ από τη ράβδο, αμέσως μόλις αφεθεί
το σύστημα ελεύθερο να κινηθεί.
iii) Μετά από λίγο, η ράβδος σχηματίζει με την
οριζόντια διεύθυνση γωνία θ, όπου ημθ=0,6, ευρισκόμενη στη θέση (2). Για τη θέση
αυτή ζητούνται:
α) Η κινητική ενέργεια του στερεού s.
β) Η στροφορμή και ο ρυθμός μεταβολής του σώματος Σ,
κατά (ως προς) τον άξονα περιστροφής στο Ο.
γ) Ο ρυθμός μεταβολής της κινητικής ενέργειας του
στερεού s.
iv) Να υπολογιστεί το έργο της δύναμης F (που ασκεί η
σανίδα στο σώμα Σ), από την θέση (1) μέχρι τη θέση (2).
Δίνεται η ροπή αδράνειας της
ράβδου ως προς τον άξονα περιστροφής της στο Ο, Ι1= 1/3 mℓ2
και g=10m/s2.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.