Τρίτη 9 Ιουνίου 2015

164. Πότε πέφτει γρηγορότερα;



Μια ομογενής ράβδος ΑΒ έχει μήκος L=2m και μάζας M=3Kg. Στο σημείο Γ με (ΒΓ)=, είναι δεμένη σημειακή μάζα m=1 Κg. Η ράβδος ισορροπεί με κλίση όπως φαίνεται στο σχήμα μέσω δυο ακλόνητων αρθρώσεων που το ένα τους άκρο είναι βιδωμένο στη ράβδο και το άλλο στο ταβάνι. Η ράβδος μπορεί να περιστρέφεται χωρίς τριβές γύρω από τις βίδες.

Α) Αν θέλαμε να στερεώσουμε το σύστημα της ράβδου ΑΒ και της μάζας m, με μια μόνο ακλόνητη άρθρωση που το ένα άκρο της να είναι στηριγμένο στο ταβάνι, να βρείτε σε ποια θέση πάνω στη ράβδο πρέπει να στερεώσουμε το άλλο άκρο της, ώστε το σύστημα να ισορροπεί στην ίδια θέση;

Β) i) Αν τη χρονική στιγμή t0=0 σπάσουν και οι δυο αρθρώσεις τότε να βρείτε με ποια ταχύτητα θα φτάσει το σύστημα των δύο μαζών στο έδαφος.
ii) Αν δέσουμε τη μάζα m στο σημείο Β και αφήσουμε το σύστημα να πέσει από την ίδια θέση τότε αυτό θα φτάσει γρηγορότερα στο έδαφος ή όχι; Εξηγείστε.

Γ) Αν τη χρονική στιγμή t0=0 σπάσει μόνο η άρθρωση στο Β, τότε πότε το σύστημα φτάνει γρηγορότερα στην κατακόρυφη θέση, όταν η μάζα m είναι δεμένη στο σημείο Γ ή όταν είναι δεμένη στο σημείο Β;
Δίνεται για τη ράβδο  Icm=×Μ×L2. Για τις πράξεις θεωρείστε g=10m/s2.

Συνοπτικήλύση:

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.