Σε λείο οριζόντιο επίπεδο, ηρεμεί μια ομογενής ράβδος μήκους ℓ=2m και μάζας m=3kg ηρεμεί σε λείο οριζόντιο επίπεδο. Σε μια στιγμή δέχεται μια οριζόντια δύναμη μέτρου F=6Ν, κάθετη στην ράβδο, στο άκρο της Α, όπως στο σχήμα. Δίνεται η ροπή αδράνειας της ράβδου ως προς κάθετο άξονα που περνά από το μέσον της Ο, Ιcm= mℓ2/12.
i) Να υπολογιστεί η επιτάχυνση του κέντρου μάζας Ο της ράβδου, καθώς και η επιτάχυνση του άκρου Α, αμέσως μόλις ασκηθεί η δύναμη F.
ii) Υποστηρίζεται ότι η κίνηση της ράβδου μπορεί να θεωρηθεί μόνο στροφική. Να εξετάσετε αν αυτό είναι σωστό ή όχι.
iii) Μπορείτε να υπολογίσετε την γωνιακή επιτάχυνση της ράβδου, θεωρώντας ως σημείο αναφοράς το άκρο Α της ράβδου και όχι το κέντρο μάζας Ο;
iv) Αν σας δίνετε ότι το άκρο Α της ράβδου αποκτά επιτάχυνση αΑ=4m/s2, όταν αλλάξουμε το μέτρο της ασκούμενης δύναμης, να βρείτε την αρχική επιτάχυνση του κέντρου Ο της ράβδου, θεωρώντας την κίνηση σύνθετη, μια μεταφορική και μια περιστροφή γύρω από κατακόρυφο άξονα ο οποίος περνά από το σημείο Α.
Τα δύο τελευταία ερωτήματα απευθύνονται μόνο σε καθηγητές.
ή
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Σημείωση: Μόνο ένα μέλος αυτού του ιστολογίου μπορεί να αναρτήσει σχόλιο.