Τρίτη, 16 Ιανουαρίου 2018

Η ροή σε έναν οριζόντιο σωλήνα.


Στο διπλανό σχήμα, βλέπετε ένα οριζόντιο σωλήνα εντός του οποίου έχουμε μια  μόνιμη ροή υγρού, το οποίο θεωρούμε ως ιδανικό ρευστό. Οι διατομές στα σημεία Β και Δ είναι Α1=6cm2 και Α2=2cm2 αντίστοιχα, ενώ η ταχύτητα ροής στο σημείο Β είναι ίση με υ1=0,1m/s. Στον κατακόρυφο σωλήνα που έχει προσαρμοσθεί στο φαρδύ σωλήνα, το υγρό έχει ανέβει κατά h1=20cm.
i) Να βρεθεί η ταχύτητα ροής του υγρού στο λεπτό μέρος του σωλήνα.
ii) Να υπολογισθεί η μεταβολή της κινητικής ενέργειας μιας ποσότητας υγρού, μάζας m= 0,1kg μεταξύ των σημείων Β και Γ, κατά τη μετάβασή της στον λεπτό σωλήνα (μεταξύ των διατομών Δ και Ε).
iii) Η παραπάνω μεταβολή της κινητικής ενέργειας, οφείλεται  σε κάποιο έργο. Ποιο είναι το αντίστοιχο έργο που παράγεται πάνω στην παραπάνω ποσότητα υγρού; Το έργο αυτό, συνδέεται με τις πιέσεις στο εσωτερικό του σωλήνα;
iv) Να υπολογιστεί η άνοδος του υγρού h2 στον κατακόρυφο σωλήνα που έχει προσαρμοσθεί στον λεπτό σωλήνα;
Δίνεται η επιτάχυνση της βαρύτητας g=10m/s2.
ή


Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου