Κυριακή, 31 Ιανουαρίου 2016

Δυο ροές σε οριζόντιους σωλήνες.

Σε δυο οριζόντιους σωλήνες (Α) και (Β) με ίσες διατομές, έχουμε ροή δύο διαφορετικών ασυμπίεστων υγρών. Οι παροχές των δύο σωλήνων είναι σταθερές και ίσες, ενώ οι δυο ροές είναι στρωτές. Στους οριζόντιους σωλήνες έχουν προσαρμοστεί δυο κατακόρυφοι λεπτοί σωλήνες, στους οποίους τα υγρά ανέρχονται, όπως στο σχήμα.
Για τις ταχύτητες πάνω στους άξονες των σωλήνων, οι οποίες είναι σημειωμένες στο σχήμα, ισχύει:
 α) υ12 και υ3 < υ4.
 β) υ1< υ2 και υ3 < υ4.
 γ) υ12 και υ3 = υ4.
 δ) υ1234.
Ποιες  προτάσεις είναι σωστές και ποιες λάθος; Να δικαιολογήσετε τις απαντήσεις σας.
ή


Τετάρτη, 27 Ιανουαρίου 2016

Πόσο δυνατά πνευμόνια έχετε;

Μια τρύπα στο κυλινδρικό δοχείο…

Διαθέτουμε ένα κυλινδρικό δοχείο με ακτίνα βάσης R=0,1m και ύψος Η=0,4m, σε οριζόντιο επίπεδο. Στο μέσον της απόστασης των δύο βάσεων υπάρχει μια μικρή οριζόντια τρύπα ακτίνας r=0,2cm, μέσω της οποίας γεμίζουμε πλήρως, μέχρι υπερχείλισης, το δοχείο με νερό. Στη συνέχεια καλύπτουμε την τρύπα με μια μεμβράνη κουζίνας.
i)   Να βρεθεί η πίεση σε σημείο Α της τρύπας, στο κάτω μέρος της μεμβράνης, καθώς και στο κέντρο Ο της μιας βάσης του δοχείου.
Ανασηκώνουμε το δοχείο, στηρίζοντάς το στη μια βάση του, όπως στο δεύτερο σχήμα.
ii)  Θα συνεχίσει η μεμβράνη να καλύπτει την τρύπα ή το νερό θα αρχίσει να ρέει, συμπαρασύροντας και την μεμβράνη;  Να δικαιολογήσετε την απάντησή σας.
iii) Αφού υπολογίσετε τις πιέσεις στα κέντρα Ο και Κ των δύο βάσεων, να υπολογίστε τις δυνάμεις που το νερό ασκεί στις βάσεις του δοχείου.
iv) Ανοίγουμε μια μικρή τρύπα στο κέντρο Ο της πάνω βάσης. Να υπολογίσετε την αρχική παροχή με την οποία εκρέει το νερό από το δοχείο, μόλις αποκατασταθεί μόνιμη και στρωτή ροή.
Το νερό να θεωρηθεί ιδανικό ασυμπίεστο ρευστό, πυκνότητας ρ=1g/cm3, ενώ δίνονται η επιτάχυνση της βαρύτητας g=10m/s2 και η ατμοσφαιρική πίεση pατ=105Ρa.
ή



Σάββατο, 23 Ιανουαρίου 2016

Η δύναμη στο έμβολο σε μια μόνιμη ροή.

Διαθέτουμε μια σύριγγα η οποία περιέχει νερό και κλείνεται με αβαρές έμβολο εμβαδού Α, το οποίο μπορεί να κινείται χωρίς τριβές.
Με οριζόντια την σύριγγα, ασκώντας μια δύναμη F  στο έμβολο, αποκαθίσταται μια μόνιμη ροή (εκδοχή Α) και το νερό εξέρχεται από το δεξιό άκρο με σταθερή ταχύτητα υ, δημιουργώντας φλέβα διατομής ίσης με Α1.
i) Η δύναμη F, με την οποία σπρώχνεται το έμβολο στη διάρκεια της μόνιμης ροής:
 α)  είναι σταθερή  β) αυξάνεται με το χρόνο,  γ) μειώνεται με το χρόνο.
ii) Το μέτρο της δύναμης, εξαρτάται από την ταχύτητα εκροής υ, με την σχέση:
α) F=λυ,    β) F= λυ2,    γ) F= λυ2+ μ
όπου λ και μ σταθερές.
iii)  Επαναλαμβάνουμε το παραπάνω πείραμα σε δυο εναλλακτικές εκδοχές (Β) και (Γ)  με κατακόρυφη τη σύριγγα. Στην (Β) με το άνοιγμα πάνω, στην (Γ) με το άνοιγμα κάτω. Η απαραίτητη δύναμη F, που πρέπει να ασκηθεί στο έμβολο, για την μόνιμη εκροή με ταχύτητα υ, είναι:
 α) μεγαλύτερη στην Β περίπτωση,  
 β) μεγαλύτερη στην  Γ περίπτωση, 
 γ) ίδια και στις  δυο περιπτώσεις και ίσου μέτρου με τη δύναμη με την περίπτωση που η σύριγγα είναι οριζόντια.
Να δικαιολογήσετε τις απαντήσεις σας, θεωρώντας το νερό ιδανικό ρευστό.
 ή






Πέμπτη, 21 Ιανουαρίου 2016

Οι πιέσεις και μια μόνιμη ροή.

Κοντά στον πυθμένα μιας μεγάλης δεξαμενής, συνδέεται ένας χονδρός οριζόντιος σωλήνας διατομής Α1, ο οποίος καταλήγει σε δεύτερο διατομής Α2= ¼ Α1. Το άκρο του δεύτερου σωλήνα κλείνεται με μια τάπα. Τα σημεία Α, Β, Γ και Δ απέχουν κατακόρυφη απόσταση h από την ελεύθερη επιφάνεια της δεξαμενής, τέτοια ώστε να ισχύει pατμ=5ρgh.
i) Σε ποιο από τα σημεία που έχουν σημειωθεί στο σχήμα, έχουμε μεγαλύτερη πίεση;
ii) Η πίεση στο σημείο Δ είναι:
α) pΔ=4ρgh,   β) pΔ=5ρgh,   γ) pΔ=6ρgh
Σε μια στιγμή, βγάζουμε την τάπα, οπότε σε ελάχιστο χρόνο αποκαθίσταται μια μόνιμη και στρωτή ροή. Θεωρώντας πολύ μεγάλη την επιφάνεια της δεξαμενής, σε σύγκριση με τις διατομές των σωλήνων, ενώ το νερό ιδανικό ασυμπίεστο ρευστό, το οποίο ρέει χωρίς τριβές:
iii) Η πίεση στο σημείο Β έχει τιμή:
α)  pΒ=0,     β) pΒ=4ρgh ,  γ) pΒ=5ρgh,  δ) pΒ=6ρgh
iv) Για την πίεση στο σημείο Δ ισχύει:
α) pΔ<5ρgh,     β) 5ρgh<  pΔ <6ρgh,      γ) pΔ>6ρgh.
Να δικαιολογήσετε τις απαντήσεις σας.
ή






Τρίτη, 19 Ιανουαρίου 2016

Δύο έμβολα και οι πιέσεις.

Στο παραπάνω σχήμα, βλέπετε μια κατακόρυφη τομή ενός κυλινδρικού δοχείου ύψους h=3α=3m το οποίο είναι γεμάτο νερό, στο οποίο υπάρχουν δύο αβαρή έμβολα Α και Β, τα οποία μπορούν να κινούνται χωρίς τριβές, σε ισορροπία. Τα εμβαδά των εμβόλων είναι Α=4cm2, η πυκνότητα του νερού ρ=1.000kg/m3, η ατμοσφαιρική πίεση pατ=105Ρa και g=10m/s2.
 i) Για τα μέτρα των εξωτερικών δυνάμεων που ασκούνται στα έμβολα ισχύει:
α) F1 < F2,   β) F1=F2,    γ) F1 > F2 .
ii) Αν F1=20Ν, να βρεθεί το μέτρο της  δύναμης F2.
iii) Να υπολογιστούν οι δυνάμεις που το νερό ασκεί στην πάνω και κάτω βάση του κυλίνδρου, εμβαδού Α1=2m2.
ή



Πέμπτη, 14 Ιανουαρίου 2016

Ανύψωση μιας στήλης νερού.

Στο  διπλανό σχήμα, ένας αντεστραμμένος σωλήνας με κλειστό το πάνω του άκρο, συγκρατείται σε κατακόρυφη θέση σε μια λεκάνη με νερό, με αποτέλεσμα, το νερό να έχει ανέλθει στο εσωτερικό του κατά h=5cm.
i)  Να υπολογιστεί η πίεση του αέρα στο εσωτερικό του σωλήνα, πάνω από το νερό.
ii)  Ένας δεύτερο σωλήνας με ανοικτά τα δυο του άκρα, βυθίζεται στο νερό και δημιουργώντας ένα ρεύμα αέρα στο πάνω άκρο του, παρατηρούμε να «ανεβαίνει» ξανά το νερό στο εσωτερικό του, κατά h=5cm.
α) Μπορείτε να ερμηνεύσετε την άνοδο του νερού στο εσωτερικό του σωλήνα;
β) Να βρεθεί η ταχύτητα του ρεύματος του αέρα, θεωρώντας τη ροή μόνιμη και  στρωτή.
iii) Αν το μήκος του σωλήνα που προεξέχει του νερού είναι l=0,1m, ποια ταχύτητα πρέπει να έχει το ρεύμα του αέρα, ώστε το νερό να φτάσει στο πάνω άκρο του σωλήνα;
iv) Αν το ρεύμα αέρα έχει ταχύτητα υ=45m/s, τι πρόκειται να συμβεί;
Δίνονται η πυκνότητα του νερού ρ=1.000kg/m3, η πυκνότητα του αέρα ρα=1,25kg/m3, η επιτάχυνση της βαρύτητας g=10m/s2 και η ατμοσφαιρική πίεση pατ=105Ν/m2.
ή





Δευτέρα, 11 Ιανουαρίου 2016

Επαναληπτικό Διαγώνισμα ΦΥΣΙΚΗΣ Γ' Λυκείου (ΚΡΟΥΣΕΙΣ, ΤΑΛΑΝΤΩΣΕΙΣ)


Εκφωνήσεις και απαντήσεις  : ΕΔΩ σε pdf κι  ΕΔΩ σε word

Το ύψος και η ταχύτητα σε σωλήνα με στένωμα.

Ο οριζόντιος σωλήνας του σχήματος, διατομής ΑΑ1=20cm2 παρουσιάζει σε μια περιοχή ένα στένωμα διατομής ΑΒ2=5cm2. Στο σωλήνα ρέει νερό που στο στένωμα έχει ταχύτητα 0,8m/s. Το ύψος του νερού στο σωλήνα Α είναι 23cm.
i)  Πόσο είναι το ύψος του νερού στο σωλήνα Β και πόσο στο σωλήνα Γ, όπου ο σωλήνας έχει ξανά διατομή Α1.
ii) Να υπολογιστεί η ταχύτητα του νερού στο στένωμα, όταν το ύψος του νερού στον σωλήνα Α είναι 12cm και στον Β μηδέν.
Η ροή να θεωρηθεί μόνιμη και στρωτή ροή ιδανικού ρευστού, ενώ η πυκνότητα του νερού είναι ίση με 1.000kg/m3 , ενώ g=10m/s2.
ή







Κυριακή, 10 Ιανουαρίου 2016

Συνάντηση ρευστών ... και όχι μόνο!

Οι δύο πανομοιότυπες βρύσες Β1 και Β2 του σχήματος (ίδια σταθερή παροχή όταν τις ανοίξουμε τελείως) έχουν κυλινδρική διατομή ακτίνας rΑ. H βρύση Β1 βρίσκεται πάνω από μεγάλη ανοικτή δεξαμενή κυλινδρικού σχήματος ακτίνας R  η οποία είναι αρχικά άδεια. Η δεξαμενή είναι ακλόνητα στερεωμένη σε ύψος h1 = 0,45 m από το έδαφος. Σε απόσταση x από τη βάση της δεξαμενής (σημείο Γ) βρίσκεται μια πολύ μικρή οπή που κλείνεται με μια τάπα εμβαδού Α1 = 0,1 cm2. Στον πυθμένα της δεξαμενής βρίσκεται ένα μανόμετρο, το οποίο μπορεί να μετρά την ολική πίεση που οφείλεται σε όλους τους παράγοντες.

 
Ή εκφώνηση και η λύση ΕΔΩ

Η πίεση και η επιτάχυνση με πολύ απλά λόγια

Γιατί έγραψα τα επόμενα;
Μάλλον για να τα καταλάβω και εγώ όσο γίνεται. Όταν σου δίνουν έναν νόμο, σου παραθέτουν την απόδειξή του και σου λένε ότι προκύπτει από διατήρηση ενέργειας, σημαίνει ότι τον έχεις καταλάβει;
Σου δίνουν και οδηγίες χρήσης, όπως:
-Να τον εφαρμόζεις σε μία γραμμή ροής!
Τους ακούς και δεν κάνεις πολλά λάθη. Τον έχεις καταλάβει τον νόμο;

Μάλλον τον έχεις καταλάβει όσο είχες καταλάβει τα προβλήματα που έλυσες με την βοήθεια του τανυστή αδράνειας ή με εξισώσεις Λαγκράνζ. Δηλαδή λίγο. Χειρίζεσαι απλά κάτι. Όπως οδηγείς αυτοκίνητο χωρίς κατ’ ανάγκην να κατανοείς την λειτουργία του. Έτσι κάνεις λάθη. Ενίοτε χοντρά.

Τετάρτη, 6 Ιανουαρίου 2016

Τι δεν είναι η πίεση!!!

Η πρώτη «θερινή» ανάρτησή μου στα ρευστά ήταν η
Μια προσπάθεια, μέσω κάποιων ερωτημάτων, να τεθεί ένα πλαίσιο αρχικών βασικών γνώσεων όσον αφορά τα υγρά. Επειδή παρατηρώ κάποιες απορίες αλλά και λανθασμένες ερμηνείες σε βασικές ιδέες, ας κάνουμε μια δεύτερη προσπάθεια, συζητώντας και αναλύοντας κάποιες από αυτές τις ιδέες.

Η πίεση δεν είναι εσωτερική ενέργεια.

Είναι σωστή η πρόταση ότι η πίεση ενός υγρού εκφράζει την   εσωτερική του ενέργεια;
Έστω ότι έχουμε ένα δοχείο, με αδιαβατικά τοιχώματα, το οποίο περιέχει ένα ασυμπίεστο υγρό και κλείνεται με ένα αβαρές έμβολο, έξω από την ατμόσφαιρα και μακριά από βαρυτικά πεδία. Προφανώς το υγρό έχει κάποια εσωτερική ενέργεια (απροσδιόριστης τιμής…). Σε μια στιγμή ασκούμε μια δύναμη F στο έμβολο, με αποτέλεσμα...
Συνέχεια...
ή



Δευτέρα, 4 Ιανουαρίου 2016

Η δύναμη, η πίεση και η αρχή του Pascal.

Το δοχείο κυβικού σχήματος πλευράς α είναι γεμάτο με νερό. Το δοχείο συνδέεται με σωλήνα διατομής Α, όπως στο σχήμα, όπου το νερό φτάνει σε ύψος 1,5α. Ο σωλήνας φράσσεται με έμβολο βάρους w, το οποίο μπορεί να κινείται χωρίς τριβές. Αν pατ η ατμοσφαιρική πίεση, ρ η πυκνότητα του νερού και g η επιτάχυνση της βαρύτητας:
i)   Η πίεση του νερού σε σημείο πολύ κοντά στην βάση του δοχείου, έχει τιμή:
α) p=pατ+ ρgα,    β) p=pατ+ 1,5ρgα,    γ) p=pατ+w+1,5ρgα,   δ) p=pατ+w/Α+1,5ρgα.
ii) Αν ασκήσουμε στο έμβολο κατακόρυφη δύναμη F, μέτρου F=3w, όπου w το βάρος του εμβόλου, τότε η δύναμη που ασκείται από το νερό στην πάνω έδρα του κύβου, αυξάνεται κατά:
α) 3w,    β) 3w/Α,  γ) 3w∙α2/Α,  δ) 4w∙α2
ή






Άνοιξε την βάνα μπας και δούμε καμιά ταλάντωση.


Στην διπλανή διάταξη το σώμα Σ μικρών διαστάσεων έχει μάζα m = 1 kg και είναι  δεμένο στο άκρο οριζοντίου ελατηρίου σταθεράς k. Το σώμα Σ βρίσκεται πάνω σε λείο επίπεδο και μέσω νήματος κρατείται έτσι ώστε να είναι συμπιεσμένο το ελατήριο κατά Δℓ. Στο άλλο  άκρο του νήματος (και του ελατηρίου) βρίσκεται κυλινδρικό δοχείο (κουβάς) μάζας m1 = 0,4 kg, που ισορροπεί πάνω σε τραχύ έδαφος με συντελεστή στατικής τριβής μ = 0,8. Αν κόψουμε το νήμα με τον κουβά άδειο τότε δεν θα μπορέσουμε να δούμε αρμονικές ταλαντώσεις. Για τον λόγο αυτό ανοίγουμε την βάνα (στο τέρμα) με διατομή Α2, που βρίσκεται ακριβώς πάνω από τον κουβά και αν την αφήσουμε να τρέξει για Δt = 7 s, θα μπορούμε να κόψουμε το νήμα, και να δούμε αρμονικές ταλαντώσεις από το σώμα Σ. Το στόμιο της βάνας έχει διατομή Α2 = 1 cm2 και είναι η κατάληξη από άλλο σωλήνα τριπλάσιας (Α1 = 3Α2) διατομής. Η παροχή της βάνας είναι Π = 0,3 L/s (τελείως ανοιχτή) και το νερό που ρέει έχει πυκνότητα ρ = 103 kg/m3 και θεωρείται ιδανικό ρευστό. Το ύψος της στήλης στον κατακόρυφο σωλήνα Κ είναι ίσο με την απόσταση που θα διανύσει το σώμα μόλις κόψουμε το νήμα πριν αλλάξει κατεύθυνση. Να βρείτε:

Σάββατο, 2 Ιανουαρίου 2016

Ελπίδας …συνέχεια!

Εγκάρσιο αρμονικό κύμα διαδίδεται σε ένα γραμμικό ελαστικό μέσο κατά τη θετική φορά και περιγράφεται από την εξίσωση y = Αημ2π(t/T - x/λ). Δύο σημεία Α και Β βρίσκονται στις θέσεις xΑ = λ, xB= 2,5λ αντίστοιχα. Αν το πλάτος και το μήκος κύματος συνδέονται με την σχέση Α = 7/2λ, η απόσταση που έχουν τα δύο σημεία τη χρονική στιγμή t1 = 7Τ/4, είναι:

Δύο υγρά που δεν αναμειγνύονται.

Σε σωλήνα σχήματος U, τοποθετούμε δύο υγρά Α και Β, τα οποία δεν αναμειγνύονται, οπότε προκύπτει μια κατάσταση, η οποία εμφανίζεται σε ένα από τα παραπάνω σχήματα.
i) Για τις πυκνότητες των δύο υγρών ισχύει:
α) ρΑ < ρΒ,    β) ρΑ = ρΒ,   γ) ρΑ > ρΒ.
ii) Ποια από τις τρεις παραπάνω εκδοχές είναι σωστή;
Να δικαιολογήστε τις απαντήσεις σας.
ή





Παρασκευή, 1 Ιανουαρίου 2016

Για την Ελπίδα και το νέο μωρό.

1. Στην ελεύθερη επιφάνεια ενός υγρού υπάρχουν δύο σύγχρονες πηγές Π1 και Π2 παραγωγής αρμονικών κυμάτων συχνότητας f και πλάτους Α. Ένα σημείο Σ της επιφάνειας του υγρού παραμένει ακίνητο εξαιτίας της συμβολής των κυμάτων. Μεταξύ του Σ και της μεσοκαθέτου της Π1Π2 υπάρχουν άλλες δυο υπερβολές ακυρωτικής συμβολής. Αν η συχνότητα f ταλάντωσης των πηγών αυξηθεί κατά 100/3  %, το πλάτος ταλάντωσης του σημείου Σ εξαιτίας της συμβολής των κυμάτων θα :
α. αυξηθεί κατά Α                   β. αυξηθεί κατά 2Α                 γ. παραμείνει μηδέν.

Pascal, ισορροπία, εξωτερική και υδροστατική πίεση



Σύμφωνα με την αρχή του Pascal, η εξωτερική πίεση που επιβάλλεται σε ένα ρευστό σε ισορροπία μεταφέρεται ίδια σε κάθε σημείο του. Λέμε επίσης, ότι η πίεση σε οποιοδήποτε σημείο μέσα στο ρευστό είναι άθροισμα της εξωτερικής πίεσης που του επιβάλλεται και της υδροστατικής πίεσης.
Για παράδειγμα, σε υγρό που βρίσκεται μέσα σε ανοικτό δοχείο, η πίεση σε βάθος h είναι ...