Δευτέρα, 7 Ιουνίου 2010

Περιστροφή δίσκου, γύρω από καρφί.

Στο παραπάνω σχήμα λεπτότατο καρφί αμελητέας μάζας έχει μήκος L=1m και μπορεί να να περιστρέφεται ελεύθερα και οριζόντια χωρίς τριβές γύρω από κατακόρυφο άξονα χχ΄. Η άλλη άκρη του καρφιού  είναι περασμένη στο κέντρο ομογενούς λεπτότατου δίσκου μάζας M=1K και ακτίνας R=1m. Ασκούμε στο κέντρο του δίσκου σταθερή οριζόντια δύναμη μέτρου F=1,75/π  N  συνεχώς κάθετη στο καρφί. Σε όλη την διάρκεια της κίνησης ο δίσκος κυλίεται χωρίς να ολισθαίνει. Να βρεθεί η ταχύτητα του κέντρου μάζας του δίσκου μετά την εκτέλεση μίας πλήρης περιστροφής του καρφιού. Δίνεται   για τον λεπτό δίσκο ότι  Icm=0,5∙MR2. Να θεωρηθεί γνωστό το θεώρημα των καθέτων αξόνων που λέει : Η ροπή αδράνειας επίπεδου στερεού ως προς άξονα z κάθετο στο επίπεδό του, ισούται με το άθροισμα των ροπών αδράνειας ως προς δύο οποιουσδήποτε κάθετους μεταξύ τους άξονες  x,ψ που βρίσκονται στο επίπεδο του σώματος και τέμνουν κάθετα τον άξονα (Ιz=Ix+Iψ)


Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου